



# Three-Phase High Voltage Generators



## **Three-Phase**

## High Voltage Generators

## **Outstanding Feature**

#### Accumulated skill through variable experience and the manufacturing technique for turbine generator.

We have accumulated qualified skill over variable experience, providing worldwide customers with alternators for marine and industrial purposes. Based on two decades of accumulated skill, we have experience in manufacturing for large steam turbines of up to 612MVA, 22kV which requires the most highly developed techniques in the electric and mechanical fields. This reliable manufacturing technique has been reflected in our high voltage synchronous generator.

#### Most up-to-date insulation system.

Our high voltage synchronous generator has the best insulation system to meet the requirements of various environments such as moisture, water drips, water splashes, oils, heat, salt, dust, etc. The insulation quality has proven to be dependable due to a strictly controlled VPI insulation system and autotapping machine, etc. (VPI: Vacuum Pressure Impregnation.)

#### **Skillful workmanship**

We employ young workers with a high educational back-ground to bring up skilled professionals to enhance the quality of our products.

#### **Computerized system**

We can make highly qualified products and meet deliveries due to our computerized automation system which can manage sales, design, manufacturing, delivery, etc.

#### **Quality control system**

ISO 9001 has been applied to all processdesign, production, test, and after-service functions. We have adopted the latest facilities and executed production identification systems to obtain strict quality control.





#### Contents

- 02 Outstanding Feature
- 04 High Voltage Synchronous Generator
- 06 Technical Design
- 10 Generator Stator
- 12 Generator Rotor

- 14 Excitation System
- 16 Selection Tables
- **20** Dimension Tables
- 26 Order Specification of Synchronous Generator

## **High Voltage Synchronous Generator**



Three-Phase -High Voltage Generators HHI is one of the world's leading synchronous machine manufacturers and is also able to draw on decades of experience as a manufacturer of generators. They are used as main and standby units in land-based power installations and for ship's electrical systems. The generators can be driven by internal combustion engines or gas, steam or hydropower turbines and electric motors.

HHI-built generators give excellent performance all over the world, both in extreme climates and in particularly demanding applications. Our mainline program in generators is shown opposite. Please enquire for off-standard ratings, voltages, and speeds.

Performance data is applied at 40° ambient temperature and at a site altitude of  $\leq$  1000m above sea level. The HHI generators covered by this brochure are highlighted in blue in our overview of diesel generators.



#### Synchronous Generator Manufacturing Program

#### THREE-PHASE HIGH VOLTAGE GENERATORS 04 | 05



5,500KVA, 6.6kV, IP23, 8Pole

**High Voltage Diesel Generator** 

#### High Speed Turbine Generator



150MVA, 3,600RPM, 13.8kV, Open Air Cooled



19,160KVA, 6Pole, 60/50Hz, 6.6kV

#### Low Speed Diesel Generator



12,500KVA, 6.6kV, 52P, IP23

## **Technical Design**



Hiah Voltade Generators

HHI synchronous generators are salient or cylindrical-pole high-voltage machines designed for the harsh conditions of diesel-driven service. They satisfy the requirements established by international classification societies and are qualified for emergency power plants in nuclear power stations.

HHI generators are self-excited and self-regulating and mostly of the brushless type. Excitation power is provided by a stationary-field exciter whose rotor is mounted on the generator shaft.

The excitation unit with the automatic voltage regulation system is accommodated either in the generator itself or in a separate switchboard.

The generators can be combined with diesel engines of all internationally renowned makers.

#### **Output, Speed**

Generator output and speed are matched to the requirements of the prime movers. The generators are designed for a power factor of 0.8 lagging as standard, i.e. they are mechanically adequate for the active-power component of their KVA rating.

The operational safety and strength of the generators is verified by a two-minute work overspeed test at 1.2 times the rated speed.

#### **Frequency**, Voltage

The generators are available for 50Hz or 60Hz and for rated voltages between 3.0kV and 22kV. Using a reference value setter, the generator voltage can be adjusted within a range of  $\pm$ 5% of the rated voltage. This set value is adhered to by the automatic voltage regulator. Other voltage adjustment ranges are available on request.

#### **Unbalanced-load Capability**

The generator can be fed an unbalanced power supply system.

The design of our generators' closed damper cage is such that a continuous unbalancedload current of 12% is per-missible as long as the rated current is not exceeded in any of the phase windings.

An unbalanced-load current is defined as the ratio of the inverse component  $I_2$  of the power system to the rated current  $I_N$  in accordance with VDE 0530 Part 1 and IEC 34-1.

In the event of a fault that leads to a higher unbalanced-load current than 12% (single-pole earth fault, two-pole short-circuit, etc.), the relationship  $(I_2 / I_N)^2 t=20$  sec. applies.

Designs for higher continuous unbalancedload currents are available on request.

#### THREE-PHASE HIGH VOLTAGE GENERATORS 06 | 07

#### **Radio Interference Suppression**

Radio interference suppression to level N, VDE 0875, is standard for HHI generators.

#### **Overload Capacity**

In compliance with IEC 34-1 the generators can be overloaded at 1.5 times the rated current for 30s. They have moreover been adapted to the demands made on diesel engines and can be operated at 110% rated output for one hour within any 12-hour period.

The resultant temperature rise is not harmful to the generators.

#### **Sine-shaped Voltage Curve**

A practically sine-shaped voltage curve is achieved with a special design of the magnet pole (pole contour) and the matching design of the stator winding.

The telephone harmonic factor (THF) according to VDE 0530 and IEC 34-1, staggered according to output size, is reliably adhered to.

#### **High Efficiency**

Thanks to the low-loss materials used and the efficient interaction of all mechnical and electrical processes in the generator (excitation, air conduction, cooling, etc.), above-average efficiency levels are attained. Such a design can only be achieved with modern, computer-aided design techniques, combined with our many years of experience in developing electrical machines.

The efficiency levels we indicate take into account all the losses referred to in VDE 0530 Part 2 and in IEC 34-2.

#### **Sustained Short-circuit Current**

The generators and its excitation systems are designed to supply a sustained short-circuit current of at least three times the rated current for a maximum period of five seconds if a threephase or two-phase terminal short-circuit occurs.

This enables protection systems to reliably detect faults and to operate as well as to selectively disconnect the affected unit.

#### **Standards and Codes of Practice**

The generators are designed, manufactured and tested in accordance with the applicable IEC/VDE regulations and DIN standards (IEC 34 and VDE 0530).

Compliance with EMC directives is also guaranteed.

On request, we also supply generators which satisfy other international standards such as ANSI, NEMA, BS, etc.

Moreover, the increased requirements placed on generators for use on ships according to IEC 92, especially with regard to utilization, degree of protection, type of cooling and dynamic response, are satisfied in accordance with the international classification societies such as ABS, BV, DNV, GL, LRS, RINA, KR, NK, etc.

HHI generators have been successfully tested and certified for many years by the leading classification societies.

In addition, the generators are certified for use as emergency power-supply generators in nuclear power stations.

## **Technical Design**



#### **Type of Construction**

The types of construction are the usual ones with one or two bearings as specified in IEC 34-7. The B type of construction with endshield bearings is preferred (the bearings are integrated on or in the end-shield, as flanged bearings or mounted on the housing console).

Owing to the compact construction of the machines, designing the generator foundations and installing the machines onsite are considerably simplified.

In the single-bearing model with flanged shaft, the rotor is completely aligned in the factory before dispatch and fixed in place with a special rotor transport device fitted in the end-shield on the drive-end (DE). It is necessary to adjust the magnetic center and the air gap at the place of installation as is normally the case with other makes.

#### **Degree of Protection - Cooling**

The standard model has degrees of protection IP21 or IP23 with IC01, IC11 or IC21 type of cooling.

The generators, however, are also available with other degrees of protection and types of cooling, such as degree of protection IP44 corresponding to the IC31 or IC37 type of cooling, or degree of protection IP44, respectively IP54 with IC81W cooling with an air/water cooler.



Generators with an output of up to approx. 10MVA are preferably mounted on a shared base frame together with the prime mover. They can, however, be directly mounted on a foundation block. Generators above 10 MVA are usually mounted directly on the foundation block.

One or two bearings can be provided, depending on the requirements. The shafts of generators intended for rigid coupling to the diesel crankshaft are provided with an integrally forged flange; flexibly coupled machines have a cylindrical shaft extension.

Other types of construction are available on request.





[IMB 20 / IMB 3]

High Voltage Generators

#### THREE-PHASE HIGH VOLTAGE GENERATORS 08 | 09

#### **Bearings**

The generators generally equipped with aircooled sleeve bearings have oil-rings for selflubrication.

The smaller sizes of the 4-, 6-, 8- and sometimes 10-pole machines have roller bearings in their basic versions but can also be fitted with sleeve bearings on request.

For larger outputs greater than, for example, 10MVA, the sleeve bearings have an additional oil-circulating pump as a standard feature in order to ensure reliable lubrication during startup/shut-down and in turning mode.

An external oil supply system with recooling (circulating-oil lubrication) can be provided to cater for extreme operating conditions where the bearings are subjected to a high degree of stress, e.g. on board ships (inclined position, high ambient temperatures, etc.).

A lub-oil pump or recooling system can be provided to cater for extreme operating conditions.

#### **Anti-condensation Heater**

Generators likely to be exposed to extreme ambient temperature fluctuations can be ordered with a built-in anti-condensation heater. However, even without a heater the quality winding insulation and the anti-corrosion coating make the generators fully suitable for use in the tropics or in order humid environments.

#### **Cooling-Ventilation**

The generators are internally cooled with cooling air supplied from the non-drive end. Inside the generator the air is effectively distributed by one or two radial fans before being discharged at the drive end.

Special care should be taken for sufficient ventilation and optimum cooling-air arrangements with generator ratings over approx. 10MVA and under certain conditions. Our enclosed generators can therefore be ordered with provisions for three different cooling-air arrangements:

► The cooling air is drawn from the machine hall atmosphere or is supplied through the foundation from below. The heated air is either discharged into the machine room through an air discharge arrangement on the top of the generator or ducted to the open. Degree of protection IP21 or IP23.

► The cooling air is supplied from the outside via a duct. Another duct, which may be heat insulated if required, takes the heated air to the open. Machine with degree of protection IP44.

► Air/water cooler or coolers are mounted on the generator, usually on top. These recool the air circulating inside the generator. Enclosed machine with degree of protection IP44 or IP54. This type of cooling is almost always used for ship's generators but can also be employed for generators on land.

eserit-eeriit elestioV rilli otereneO

### **Generator Stator**



#### **Housing and Stator Core**

The stator core is built into a rugged welded housing. It is axially compressed and held together by the clamping elements on the back of the core. The stator core consists of high-grade electric sheet steel laminations, insulated from each other by a varnish coat. The three-phase winding and auxiliary winding for supplying the excitation unit are accommodated in the slots of the stator core.

#### Monitoring

0000

The stator winding temperature is monitored by resistance temperature detectors embedded in the winding. The generator bearings can also be monitored by means of resistance or limit value contact thermometers.

#### **Winding Terminals**

The stator winding terminals consist of flat copper bars which are either exposed at the lower section of the stator or housed in a terminal box laterally on the stator box.

renator Sta

Three-Phase Jinh Voltane Generatore

#### THREE-PHASE HIGH VOLTAGE GENERATORS 10 | 11

#### **Insulation System**

The stator windings are of the two-layer barrel type (integral coils) and are star connected. The mica-based, resin impregnated insulation has proven its worth over many years in all parts of the world.

It involves impregnation of the whole stator with a high-grade, solvent-free synthetic resin of low viscosity in a vacuum vessel and subsequent hardening in a drying oven (VPI technology)

#### advantages:

- ▶ Protection from contamination and dirt.
- Protection from moisture, oil, and chemically aggressive atmospheres.
- ▶ Low dielectric loss.
- ▶ Good thermal conductance.
- ▶ Resistance to tropical climates and thermal attack.
- High service reliability and long life due to the use of temperature-resistant insulating materials.





## **Generator Rotor**



There are two types of rotors used in the generators manufactured at HHI. The salient pole rotor and the cylindrical rotor design that is available for the smaller generator type.

The rotor winding, like the stator winding, conforms to temperature class F. The connections between the poles and the rotating rectifier assembly are attached with insulation to the shaft. The fans are attached on the shaft and ensure an optimum distribution of air in the machine.

The field or pole winding is made of pre-insulated flat copper which is wound around the pole body in several layers.

The individual poles or the rotor-laminated core are completely wound and then soaked in synthetic resin, after which they are hardened in an oven.

Each generator rotor is tested in the factory for 2 minutes at 1.2 times the rated speed in order to verify its service reliability and strength.

The rotor assembly consists of a forged shaft, a pole arrangement with field and damper windings and the rotor of the exciter as well as the rotating rectifier assembly.

Three Phase High Voltage Generator



#### THREE-PHASE HIGH VOLTAGE GENERATORS 12 | 13

#### **Salient Rotor**

Two different methods are used to secure the poles to the shaft of a salient pole rotor.

Depending on the size, a laminated rotor or a solid magnet wheel with bolted-on poles is used.

In the case of a laminated rotor, steel sheetsshaped according to the number of poles-are placed next to each other, axially clamped between pressure plates and shrunk onto the shaft as a rotor-laminated core.

In the version with the poles bolted on, the magnet wheel is shrunk onto the shaft and the individual poles are bolted onto the wheel rim.

#### **Cylindrical Rotor**

The core is made of laminated punched steel sheet, pressed and secured between two solid endplates and shrink fitted onto the shaft. The rotor winding is locked tightly in the rotor slots with wedges and the winding ends are supported with a glass fibre band. To help maintain the efficient cooling of the generator, the rotor core is cooled by air flowing radially through the ducts in the rotor core itself.



## **Excitation System**



#### **Damper Winding**

The generator rotor has a generously dimensioned damper winding for problem-free parallel operation and for effective damping of the contra-rotating field in the case of unbalanced loading.

This damper arrangement endows the generator with highly effective damping properties for combating transient oscillations which are caused by irregular torque of the driving combustion engine and which can occur during parallel operation with large load changes (switching operations).

#### **Excitation System**



Jiah Voltage Generators

#### THREE-PHASE HIGH VOLTAGE GENERATORS 14 | 15

#### **Brushless Excitation**

The exciter is a brushless synchronous machine with stationary, armature poles.

The rotor of the exciter is mounted on the shaft of the main generator.

The three-phase current generated in the rotor winding of the exciter is rectified by rotating silicon diodes (three-phase bridge circuit) and applied to the rotating pole winding of the main generator.

The current for the stationary field winding of the exciter is supplied by the pilot excitation unit, a combination of excitation system, designed for load-dependant excitation, and the thyristor voltage regulator.

A low-voltage auxiliary winding contained in the stator slots of the main generator in conjunction with an oscillating circuit comprising a reactor and capacitor is used to generate the loadindependent no-load exciter current component is picked up by a current transformer in the main circuit.

HYUNDAI

Both current components are vectorially added and adjusted as necessary to ensure that the maximum excitation demand occurring during operation within the pre-determined voltage regulator maintains stable operation through setpoint/actual value comparison. Should the automatic voltage control fail during isolated operation, the voltage rise will not exceed 15% of the rated voltage.

An adjustable quadrature-droop circuit provides for the distribution of the reactive load required in parallel operation.

The switchboard must usually be provided with voltage transformers for the voltage regulation and current transformers required for the droop circuits.

Three star point current transformers can be fitted in the generator if required.

#### **Parallel Operation**

Our generators are suitable for paralleling with one another and with an infinite network. For parallel operation with dieseldriven generators made by other manufacturers, the operating conditions must be analyzed beforehand.

h Voltage

Denerators

## **Selection Tables**

#### 6600 V, 60 Hz

Rated output at p.f. 0.8 to 1.0 and coolant temperature (CT) $\cdots$ °C

#### 6000 V, 50 Hz

Rated output at p.f. 0.8 to 1.0 and coolant temperature (CT) $\cdots$ °C

| Colum | ı         |              |           |           | С         | column    |            |             |           |
|-------|-----------|--------------|-----------|-----------|-----------|-----------|------------|-------------|-----------|
| 1     | 2         | 2 3          | 4         | _         |           | 1         | 2          | 3           | 4         |
|       | С         | Т            |           |           |           |           | СТ         |             |           |
| (     | <u>°</u>  | <u>°</u>     | <u>°C</u> | Rul       | es        | <u>°C</u> | <u>°C</u>  | <u>°C</u>   | <u>°C</u> |
| 4     | ) 4       | 5 50         | 55        | VDE       | -         | 40        | 45         | 50          | 55        |
|       |           | 40           | 45<br>50  |           |           |           |            | 40          | 45<br>50  |
| -     | 1         | -<br>0 /15   | 50        | AD3<br>RV | <b>)</b>  | -         | - 10       | -           | 50        |
| 4     | ) 4       | 5 -          | -         | GL        |           | 40        | 45         | -           | -         |
| -     | 4         | 0 45         | 50        | LRS       |           | -         | 40         | 45          | 50        |
| 3     | 5 -       | 45           | -         | DN\       | /         | 35        | -          | 45          | -         |
| -     | 4         | 5 50         | -         | RINa      | а         | -         | 45         | 50          | -         |
| k٧    | ′A k∖     | A kva        | A kVA     |           |           | kVA       | kVA        | kVA         | kVA       |
| 90    | 0 rev/min | (8-pole) 660 | 0 V 00    |           |           | 750 re\   | v/min (8-p | ole) 6000 V |           |
| 2,5   | 97 2,5    | 24 2,45      | 0 2,377   | HSR(J)7   | 713 - 8   | 2,597     | 2,524      | 2,450       | 2,377     |
| 2,9   | 15 2,8    | 33 2,75      | 0 2,668   |           | 715       | 2,915     | 2,833      | 2,750       | 2,668     |
| 3,3   | 39 3,2    | 45 3,15      | 0 3,056   |           | 717       | 3,339     | 3,245      | 3,150       | 3,056     |
| 3,6   | 57 3,5    | 54 3,45      | 0 3,347   |           | 719       | 3,657     | 3,554      | 3,450       | 3,347     |
| 4,1   | 34 4,0    | 17 3,90      | 0 3,783   | HSR(J)7   | 801 - 8   | 4,134     | 4,017      | 3,900       | 3,783     |
| 4,5   | 05 4,3    | 78 4,25      | 0 4,123   |           | 803       | 4,505     | 4,378      | 4,250       | 4,123     |
| 4,9   | 82 4,8    | 41 4,70      | 0 4,559   |           | 805       | 4,982     | 4,841      | 4,700       | 4,559     |
| 5,4   | 06 5,2    | 53 5,10      | 0 4,947   |           | 807       | 5,406     | 5,253      | 5,100       | 4,947     |
| 5,8   | 83 5,7    | 17 5,55      | 0 5,384   |           | 809       | 5,883     | 5,717      | 5,550       | 5,384     |
| 6,4   | 13 6,2    | 32 6,05      | 0 5,869   | HSR(J)7   | 913 - 8   | 6,413     | 6,232      | 6,050       | 5,869     |
| 7,1   | 02 6,9    | 01 6,70      | 0 6,499   |           | 915       | 7,102     | 6,901      | 6,700       | 6,499     |
| 7,7   | 38 7,5    | 19 7,30      | 0 7,081   |           | 917       | 7,738     | 7,519      | 7,300       | 7,081     |
| 8,2   | 68 8,0    | 34 7,80      | 0 7,566   |           | 919       | 8,268     | 8,034      | 7,800       | 7,566     |
| 8,9   | 04 8,6    | 52 8,40      | 0 8,148   |           | 921       | 8,904     | 8,652      | 8,400       | 8,148     |
| 11,1  | 130 10,8  | 315 10,50    | 00 10,185 | HSR(J)7   | 1,203 - 8 | 8 9,275   | 9,013      | 8,750       | 8,488     |
| 12,5  | 508 12,   | 154 11,80    | 00 11,446 |           | 1,205     | 10,388    | 10,094     | 9,800       | 9,506     |
| 13,9  | 92 13,    | 596 13,20    | 0 12,804  |           | 1,207     | 11,660    | 11,330     | 11,000      | 10,670    |

#### THREE-PHASE HIGH VOLTAGE GENERATORS 16 | 17

#### 6600 V, 60 Hz

kVA

kVA

Rated output at p.f. 0.8 to 1.0 and coolant temperature (CT) $\cdots$ °C

#### 6000 V, 50 Hz

kVA

**kVA** 

Rated output at p.f. 0.8 to 1.0 and coolant temperature (CT) $\cdots$  °C

| Column |    |    |    |       | Column |    |    |    |
|--------|----|----|----|-------|--------|----|----|----|
| 1      | 2  | 3  | 4  |       | 1      | 2  | 3  | 4  |
|        | СТ |    |    |       |        | СТ |    |    |
| °C     | °C | °C | °C | Rules | °C     | °C | °C | °C |
| 40     | 45 | 50 | 55 | VDE   | 40     | 45 | 50 | 55 |
|        |    | 40 | 45 | KR    |        |    | 40 | 45 |
| -      | -  | -  | 50 | ABS   | -      | -  | -  | 50 |
| -      | 40 | 45 | 50 | BV    | -      | 40 | 45 | 50 |
| 40     | 45 | -  | -  | GL    | 40     | 45 | -  | -  |
| -      | 40 | 45 | 50 | LRS   | -      | 40 | 45 | 50 |
| 35     | -  | 45 | -  | DNV   | 35     | -  | 45 | -  |
| -      | 45 | 50 | -  | RINa  | -      | 45 | 50 | -  |
|        |    |    |    |       |        |    |    |    |

720 rev/min (10-pole) 6600 V 600 rev/min (10-pole) 6000 V 2,586 2,440 2,367 HSR(J)7 713 - 10 1,940 2,513 2,120 2,060 2,000 2,783 715 2,279 2,704 2,625 2,546 2,215 2,150 2,086 717 2,328 3,106 3,018 2,930 2,842 2,544 2,472 2,400 3,339 3,056 719 2,522 3,245 3,150 2,756 2,678 2,600 3,657 3,554 3,450 3,347 HSR(J)7 803 - 10 2,968 2,884 2,800 2,716 3,950 3,832 805 3,296 3,104 4,187 4,069 3,392 3,200 4,547 4,419 4,290 4,161 807 3,710 3,605 3,500 3,395 5,088 4,944 4,800 4,656 809 4,240 4,120 4,000 3,880 5,268 5,119 4,970 4,821 HSR(J)7 913 - 10 4,346 4,223 4,100 3,977 5,894 5,727 5,560 5,393 915 4,876 4,738 4,600 4,462 6,519 6,335 6,150 5,966 917 5,406 5,253 5,100 4,947 7,134 6,932 6,730 6,528 919 5,936 5,768 5,600 5,432 7,950 7,725 7,500 7,275 921 6,572 6,386 6,200 6,014 9,381 9,116 8,850 8,585 HSR(J)7 1,203 - 10 7,738 7,519 7,300 7,081 10,282 9,991 9,700 9,409 1,205 8,480 8,240 8,000 7,760 11,554 11,227 10,900 10,573 1,207 9,540 9,270 9,000 8,730

## **Selection Tables**

#### 13800 V, 60 Hz

Rated output at p.f. 0.8 to 1.0 and coolant temperature (CT) $\cdots$ °C

#### 11000 V, 50 Hz

Rated output at p.f. 0.8 to 1.0 and coolant temperature (CT) $\cdots$ °C

| Col | umn     |            |             |       |         | С         | olumn   |            |            |       |
|-----|---------|------------|-------------|-------|---------|-----------|---------|------------|------------|-------|
|     | 1       | 2          | 3           | 4     |         |           | 1       | 2          | 3          | 4     |
|     |         | СТ         |             |       |         |           |         | СТ         |            |       |
|     | °C      | °C         | °C          | °C    | Rul     | es        | Ĵ       | C          | °C         | °C    |
|     | 40      | 45         | 50          | 55    | VDE     |           | 40      | 45         | 50         | 55    |
|     |         |            | 40          | 45    | KR      |           |         |            | 40         | 45    |
|     | -       | -          | -           | 50    | ABS     | 5         | -       | -          | -          | 50    |
|     | -       | 40         | 45          | 50    | BV      |           | -       | 40         | 45         | 50    |
|     | 40      | 45         | -           | -     | GL      |           | 40      | 45         | -          | -     |
|     | -       | 40         | 45          | 50    | LRS     | ,         | -       | 40         | 45         | 50    |
|     | 30      | -          | 45<br>50    | -     |         | /         | 30      | -          | 45<br>50   | -     |
| -   | -       | 43         | 50          | -     | T\IIN(  | a         | -       | 45         | 50         | -     |
|     | KVA     | KVA        | KVA         | KVA   |         |           | KVA     | KVA        | KVA        | KVA   |
|     | 900 rev | /min (8-po | le) 13800 \ | /     |         |           | 750 rev | /min (8-po | ole) 11000 | V     |
|     | 3,286   | 3,193      | 3,100       | 3,007 | HSR(J)7 | 800 - 8   | 2,650   | 2,575      | 2,500      | 2,425 |
|     | 3,816   | 3,708      | 3,600       | 3,492 |         | 801       | 3,180   | 3,090      | 3,000      | 2,910 |
|     | 4,346   | 4,223      | 4,100       | 3,977 |         | 803       | 3,604   | 3,502      | 3,400      | 3,298 |
|     | 5,194   | 5,047      | 4,900       | 4,753 |         | 807       | 4,240   | 4,120      | 4,000      | 3,880 |
|     | 5,618   | 5,459      | 5,300       | 5,141 |         | 811       | 4,664   | 4,532      | 4,400      | 4,268 |
|     | 6,254   | 6,077      | 5,900       | 5,723 | HSR(J)7 | 917 - 8   | 5,194   | 5,047      | 4,900      | 4,753 |
|     | 6,784   | 6,592      | 6,400       | 6,208 |         | 919       | 5,618   | 5,459      | 5,300      | 5,141 |
|     | 7,632   | 7,416      | 7,200       | 6,984 |         | 921       | 6,360   | 6,180      | 6,000      | 5,820 |
|     | 8,480   | 8,240      | 8,000       | 7,760 | HSR(J)7 | 1,205 - 8 | 6,996   | 6,798      | 6,600      | 6,402 |
|     | 9,540   | 9,270      | 9,000       | 8,730 |         | 1,207     | 7,950   | 7,725      | 7,500      | 7,275 |
|     | 10,600  | 10,300     | 10,000      | 9,700 |         | 1,211     | 8,798   | 8,549      | 8,300      | 8,051 |

#### THREE-PHASE HIGH VOLTAGE GENERATORS 18 | 19

#### 13800 V, 60 Hz

Rated output at p.f. 0.8 to 1.0 and coolant temperature (CT) $\cdots$ °C

#### 11000 V, 50 Hz

Rated output at p.f. 0.8 to 1.0 and coolant temperature (CT) $\cdots$  °C

| Colu | mn  |     |     |     |       | Column |     |     |     |
|------|-----|-----|-----|-----|-------|--------|-----|-----|-----|
|      | 1   | 2   | 3   | 4   | -     | 1      | 2   | 3   | 4   |
|      |     | СТ  |     |     |       |        | CT  |     |     |
|      | °C  | C   | °C  | °C  | Rules | °C     | °C  | °C  | °C  |
|      | 40  | 45  | 50  | 55  | VDE   | 40     | 45  | 50  | 55  |
|      |     |     | 40  | 45  | KR    |        |     | 40  | 45  |
|      | -   | -   | -   | 50  | ABS   | -      | -   | -   | 50  |
|      | -   | 40  | 45  | 50  | BV    | -      | 40  | 45  | 50  |
|      | 40  | 45  | -   | -   | GL    | 40     | 45  | -   | -   |
|      | -   | 40  | 45  | 50  | LRS   | -      | 40  | 45  | 50  |
|      | 35  | -   | 45  | -   | DNV   | 35     | -   | 45  | -   |
|      | -   | 45  | 50  | -   | RINa  | -      | 45  | 50  | -   |
|      | kVA | kVA | kVA | kVA |       | kVA    | kVA | kVA | kVA |

720 rev/min (10-pole) 13800 V 600 rev/min (10-pole) 11000 V 2,703 2,550 2,474 HSR(J)7 801 - 10 2,226 2,037 2,627 2,163 2,100 3,180 2,910 803 2,500 3,090 3,000 2,650 2,575 2,425 3,604 3,502 3,400 3,298 805 2,968 2,884 2,800 2,716 4,081 3,296 3,104 3,966 3,850 3,735 806 3,392 3,200 4,346 4,223 4,100 3,977 809 3,604 3,502 3,400 3,298 4,982 4,700 4,559 4,017 3,900 4,841 811 4,134 3,783 5,406 5,253 5,100 4,947 HSR(J)7 917 - 10 4,452 4,200 4,074 4,326 5,883 5,717 5,550 5,384 919 4,876 4,738 4,600 4,462 6,572 6,386 6,200 6,014 921 5,406 5,253 5,100 4,947 7,187 6,983 6,780 6,577 HSR(J)7 1,205 - 10 5,936 5,768 5,600 5,432 7,950 7,725 7,500 7,275 1,207 6,572 6,386 6,200 6,014 8,756 8,508 8,260 8,012 1,209 7,208 7,004 6,800 6,596 9,752 9,476 9,200 8,924 1,211 8,056 7,828 7,600 7,372

## **Dimension Tables**

HSR7 710 to HSR7 811 Type of Construction IM B16 Sleeve Bearing(IC01 Air Cooling)





## HSR7 710 to HSR7 921 Type of Construction IM B20 Sleeve Bearing(IC01 Air Cooling)

THREE-PHASE HIGH VOLTAGE GENERATORS 20 | 21

919 921

## **Dimension Tables**

HSR7 1200 Type of Construction IM B20 Sleeve Bearing(IC01 Air Cooling)





## HSJ7 710 to HSJ7 811 Type of Construction IM B16 Sleeve Bearing(IC81W Air to Water Cooling)

THREE-PHASE HIGH VOLTAGE GENERATORS 22 | 23

## **Dimension Tables**

HSJ7 710 to HSJ7 921 Type of Construction IM B20 Sleeve Bearing(IC81W Air to Water Cooling)

*φ*250

231

20

P PA PB 50 211 ¢215 *φ*250 Unit = mm 252 2 Tapped hole DB to DIN 332 End 56 3 Cover for rotating rectifier **4** Cover for terminal and excitation equipment 5 Cable gland holder 1 Center of gravity ă 3 4 d BAB ٢ ВП BC С g ЗÖ ØВ ЭH

S ЯΗ Ø PP ¥₽ 0 AH IA OH

ΨF

Ч

| 6600 | V / 6  | 2000 | >   |      |        |       |       |        |        |        |        |        |          |        |       |     |     |      |        |        |      |     |        |      |     |      |          |        |     |       |      |
|------|--------|------|-----|------|--------|-------|-------|--------|--------|--------|--------|--------|----------|--------|-------|-----|-----|------|--------|--------|------|-----|--------|------|-----|------|----------|--------|-----|-------|------|
| Type | No. of | <    | 2   | ę    | Ş      | ę     | ų     | L      | 2      |        | •      | 6      |          | 6      | ä     | ¢   | -   | 5    | 9      | 5      |      |     | -      |      | -   | c    | 8        | ٤      |     | S     | ja l |
| HSJ7 | Poles  | ۲    | ŧ   | ł    | ڊ<br>¥ | Ą     | ¥     | ۲<br>۲ | 2      | ī.     | ۵<br>۵ | 5<br>4 |          | 3      | ä     | د   | -   | Ĕ    | -<br>2 | E      | 2    | 4   | 3      | 1    | Ż   | r    | <b>9</b> | ے<br>ج | ۵   | BB    | ш    |
| 713  | 10     | 1350 | 180 | 1500 | 1400 1 | 1205  | 923 2 | 128 1( | 045 24 | 101 17 | 90 22  | 10 20( | ) 210    | 1070   | ) 435 | 630 | 009 | 35 ` | 1034 2 | 301 10 | 0 42 | 326 | 5 725  | 2130 | 759 | 960  | 1482     | 560    | 200 | /30 3 | lõ   |
| 715  | 810    |      |     |      |        |       |       |        |        |        |        |        |          |        |       |     |     |      |        |        |      |     |        |      |     |      |          |        |     |       |      |
| 717  | 810    |      |     |      |        |       |       |        |        | 15     | 50 23. | 70     |          | 1230   | 359   |     |     |      |        |        |      | 342 | 5 805  | 2290 |     |      |          |        |     |       |      |
| 719  | 810    |      |     |      |        |       |       |        |        |        |        |        |          |        |       |     |     |      |        |        |      |     |        |      |     |      |          |        |     |       |      |
| 801  | ∞      | 1620 | 180 | 1800 | 1550 1 | 1280  | 998 2 | 276 1  | 120 ZE | 529 18 | 70 22  | 20 25( | 175      | 5 1245 | 538   | 635 | 510 | 40   | 1012 2 | 264 26 | 5 42 | 347 | 8 815  | 2120 | 930 | 1031 | 1447     | 560    | 240 | A36 4 | 52   |
| 803  | 810    |      |     |      |        |       |       |        |        | 20     | 20 23  | 70     |          | 1165   | 10    |     |     |      |        |        |      | 362 | 8 875  | 2270 |     |      |          |        |     |       |      |
| 805  | ∞      |      |     |      |        |       |       |        |        |        |        |        |          |        |       |     |     |      |        |        |      |     |        |      |     |      |          |        |     |       |      |
| 805  | 10     |      |     |      |        |       |       |        |        | 21     | 40 24  | 90     |          | 1285   | 10    |     |     |      |        |        |      | 374 | 8 937  | 2390 |     |      |          |        |     |       |      |
| 807  | 810    |      |     |      |        |       |       |        |        |        | _      |        |          |        |       |     |     |      |        |        |      |     |        |      |     |      |          |        |     |       |      |
| 809  | 810    |      |     |      |        |       |       |        |        | 23     | 36.    | 50     |          | 1445   | 10    |     |     |      |        |        |      | 390 | 8 102C | 2550 |     |      |          |        |     |       |      |
| 913  | 810    | 1930 | 220 | 2150 | 1770 1 | 500 1 | 123 2 | 623 1  | 274 25 | 964 23 | 64 25  | 75 25( | 0<br>105 | 5 1543 | 3 733 | 009 | 590 | 45 ` | 1225 2 | 669 29 | 5 42 | 380 | 066 0  | 2480 | 850 | 1150 | 1757     | 560    | 220 | 136 3 | 30   |
| 915  | 810    |      |     |      |        |       |       |        |        |        |        |        |          |        |       |     |     |      |        |        |      |     |        |      |     |      |          |        |     |       |      |
| 917  | 810    |      |     |      |        |       |       |        |        | 25     | 34 27. | 45     |          | 1493   | ~     |     |     |      |        |        |      | 397 | 0 1075 | 2650 |     |      |          |        |     |       |      |
| 919  | 10     |      |     |      |        |       |       |        |        |        |        |        |          |        |       |     |     |      |        |        |      |     |        |      |     |      |          |        |     |       |      |
| 919  | ∞      |      |     |      |        |       |       |        |        | 27     | 04 29  | 15     |          | 1663   | ~     |     |     |      |        |        |      | 414 | 0 1160 | 2820 |     |      |          |        |     |       |      |
| 921  | 810    |      |     |      |        |       |       |        |        |        |        |        |          |        |       |     |     |      |        |        |      |     |        |      |     |      |          |        |     |       |      |

13800 V / 11000 V

| = mm |        | 뿝           | $\phi 250$ |      |     |      |     |      |     | <i>φ</i> 250 |       |     |
|------|--------|-------------|------------|------|-----|------|-----|------|-----|--------------|-------|-----|
| Unit |        | PA          | 252        |      |     |      |     |      |     | 231          |       |     |
|      | End    | ۵.          | 56         |      |     |      |     |      |     | 50           |       |     |
|      | Shaft  | ш           | 420        |      |     |      |     |      |     | 310          |       |     |
|      |        | DB          | M36        |      |     |      |     |      |     | M36          |       |     |
|      |        | ۵           | 240        |      |     |      |     |      |     | 220          |       |     |
|      | ξ      | 3           | 560        |      |     |      |     |      |     | 560          |       |     |
|      | 5      | ₽           | 1447       |      |     |      |     |      |     | 1757         |       |     |
|      | ¢      | 2           | 1031       |      |     |      |     |      |     | 1150         |       |     |
|      | -      | 3           | 930        |      |     |      |     |      |     | 850          |       |     |
|      |        | 3           | 2390       | 2550 |     | 2750 |     | 2890 |     | 2930         | 3110  |     |
|      | د<br>- | ł           | 937        | 1020 |     | 1120 |     | 1190 |     | 1215         | 1305  |     |
|      |        |             | 3748       | 3908 |     | 4108 |     | 4248 |     | 4250         | 4430  |     |
|      | 2      | ۷           | 42         |      |     |      |     |      |     | 42           |       |     |
|      | 5      | E           | 265        |      |     |      |     |      |     | 295          |       |     |
|      | 5      | 5           | 2264       |      |     |      |     |      |     | 2669         |       |     |
|      | 9      | 2           | 1012       |      |     |      |     |      |     | 1225         |       |     |
|      |        |             | 40         |      |     |      |     |      |     | 45           |       |     |
|      | -      | -           | 510        |      |     |      |     |      |     | 590          |       |     |
|      | د      | د           | 635        |      |     |      |     |      |     | 600          |       |     |
|      | ł      | 8           | 538        | 10   |     | 10   |     | 10   |     | 3 733        | ~     |     |
|      | 6      | 3           | 1285       | 1445 |     | 1645 |     | 1785 |     | 1773         | 1953  |     |
|      | د<br>د | ך<br>ק      | 175        |      |     |      |     |      |     | 105          |       |     |
|      | 2      | 8           | 0 250      | 0    |     | 0    |     | 0    |     | 5 250        | 0     |     |
|      | 6      |             | 249        | 265  |     | 285  |     | 299  |     | 1 302        | 1 325 |     |
|      | 6      | •           | 9 2140     | 2300 |     | 2500 |     | 364( |     | 1 281        | 299   |     |
|      | 2      | ₹           | 0 2525     |      |     |      |     |      |     | 4 296        |       |     |
|      | د<br>ح | P A         | 6 112(     |      |     |      |     |      |     | 3 127        |       |     |
|      | 4      | ¥           | 227        |      |     |      |     |      |     | 3 262        |       |     |
|      | ļ      | ¥           | 966 C      |      |     |      |     |      |     | 0 112;       |       |     |
|      | 4      | Ā           | 0 128(     |      |     |      |     |      |     | 0 150        |       |     |
|      | <      | ¥           | 0 155      |      |     |      |     |      |     | 0 177        |       |     |
|      | 4      | 8           | 180        |      |     |      |     |      |     | 215          |       |     |
| 8    | š      | ł           | 0 180      |      |     |      |     |      |     | 0 22(        |       |     |
|      | ہ<br>ب | ۲<br>(۵     | 162        | ~    | ~   | ~    |     |      |     | 193          | ~     | 6   |
|      | No. o  | Poles       | 810        | 810  | 810 | 810  | 10  | ∞    | 9   | 810          | 810   | 810 |
| 5    | Type   | <b>HSJ7</b> | 801        | 803  | 805 | 807  | 809 | 809  | 811 | 917          | 919   | 921 |



## HSJ7 1200 Type of Construction IM B20 Sleeve Bearing(IC81W Air to Water Cooling)

# V 0009 / V 0099

| Τŀ     | IRI         | ΕE     | -P     | ΗA   | SI    | ΞH | IGH    | V        | DL.          | ΤA     | GE    | G    | E١   | ١E     | RAT | 0 R | S | 24 | 25 |
|--------|-------------|--------|--------|------|-------|----|--------|----------|--------------|--------|-------|------|------|--------|-----|-----|---|----|----|
|        |             |        |        |      |       |    |        |          |              |        |       |      |      |        |     |     |   |    |    |
| mm     |             | 쏊      | \$315  |      |       |    | ШШ     |          | 뿚            | \$315  |       |      |      |        |     |     |   |    |    |
| Unit = |             | ΡA     | 292    |      |       |    | Unit = |          | PA           | 292    |       |      |      |        |     |     |   |    |    |
|        | End         | ۵.     | 63     |      |       |    |        | End      | ۵.           | 63     |       |      |      |        |     |     |   |    |    |
|        | shaft I     | ш      | 350    |      | _     |    |        | shaft I  | ш            | 350    |       |      |      |        |     |     |   |    |    |
|        |             | DB     | M36    |      |       |    |        | 0,       | BB           | M36    |       |      |      |        |     |     |   |    |    |
|        |             | ۵      | 280    |      |       |    |        |          | <u>_</u>     | 280    |       |      |      |        |     |     |   |    |    |
|        | ے<br>ح      | )<br>7 | 560    |      |       |    |        | ٤        | ہے۔<br>ج     | 560    |       |      |      |        |     |     |   |    |    |
|        | g           | )<br>Y | 1958   |      |       |    |        | Ę        | <del>9</del> | 1958   |       |      |      |        |     |     |   |    |    |
|        | c           | y      | 1170   |      |       |    |        | c        | 2            | 1170   |       |      |      |        |     |     |   |    |    |
|        | 2           | Ŷ      | 1007   |      |       |    |        | 9        | 3            | 1007   |       |      |      |        |     |     |   |    |    |
|        | =           | :      | 2690   |      | 2930  |    |        |          | 3            | 2690   | 2930  |      |      | 3150   |     |     |   |    |    |
|        | <u>د</u>    | 3      | 1060   |      | 1180  |    |        | <u>د</u> | 3            | 1060   | 1180  |      |      | 1290   |     |     |   |    |    |
|        |             | ı      | 4160   |      | 4400  |    |        |          | -            | 4160   | 4400  |      |      | 4620   |     |     |   |    |    |
|        | ¥           | 2      | 42     |      |       |    |        | 2        | 2            | 42     |       |      |      |        |     |     |   |    |    |
|        | Ħ           |        | 420    |      |       |    |        | ł        | È            | 420    |       |      |      |        |     |     |   |    |    |
|        | Ĥ           |        | 2868   |      |       |    |        | 2        | 2            | 2868   |       |      |      |        |     |     |   |    |    |
|        | Ĥ           |        | 1268   |      |       |    |        | 9        | 2            | 1268   |       |      |      |        |     |     |   |    |    |
|        | ИА          |        | 50     |      |       |    |        |          | ЦА           | 20     |       |      |      |        |     |     |   |    |    |
|        | I           | :      | 009    |      |       |    |        | -        | E            | 009    |       |      |      |        |     |     |   |    |    |
|        | <u>د</u>    |        | 802    |      |       |    |        | د        | د            | 802    |       |      |      |        |     |     |   |    |    |
|        | H           | 5      | 648    |      |       |    |        | 8        | 8            | 648    |       |      |      |        |     |     |   |    |    |
|        | 2           |        | 1338   |      | 1578  |    |        | 6        | 3            | 1338   | 1578  |      |      | 1798   |     |     |   |    |    |
|        | С<br>В      | 2      | 185    |      |       |    |        |          | 2            | 185    |       |      |      |        |     |     |   |    |    |
|        | ä           | 3      | 1 300  |      |       |    |        | 8        | 8            | 1 300  |       |      |      |        |     |     |   |    |    |
|        | βΔ          | 5      | t 2774 |      | t 301 |    |        | 2        | DA           | t 2774 | t 301 |      |      | t 323/ |     |     |   |    |    |
|        | ~           | 1      | 8 240  |      | 2644  |    |        | ٥        | ٥            | 8 240  | 2644  |      |      | 2864   |     |     |   |    |    |
|        | N N         | :      | 7 328  |      |       |    |        | 2        | 2            | 7 328  |       |      |      |        |     |     |   |    |    |
|        | ۵<br>۵      | 2      | 5 128  |      |       |    |        | <        | ค<br>ส       | 5 128  |       |      |      |        |     |     |   |    |    |
|        | 4           |        | 3 269  |      |       |    |        | <        | ¥            | 3 269  |       |      |      |        |     |     |   |    |    |
|        | Ā           | {      | 2 114  |      | _     |    |        | ž        | ¥            | 2 114  |       |      |      |        |     |     |   |    |    |
|        | <b>A</b>    | 2      | 5 155  |      | _     |    |        | 4        | ,<br>AL      | 5 155  |       |      |      |        |     |     |   |    |    |
|        | 0<br>0<br>0 | ć      | 0 84   |      |       |    |        | ~        | ž            | 0 84   |       |      |      |        |     |     |   |    |    |
|        | AF<br>AF    | t<br>r | 0 260  |      | _     |    | > 0    | 2        | ž            | 0 260  |       |      |      |        |     |     |   |    |    |
| 5      | 4           |        | 00 30  |      |       |    | 100    | 2        | ₹            | 00 30  |       |      |      |        |     |     |   |    |    |
| 0      | ⊳<br>Jo     | ŝ      | 0 24(  | 0    | 0     |    | 11     | ہ<br>مر  | ν<br>ν       | 24(    |       | 0    |      | 0      |     |     |   |    |    |
| >      | No.         | Pole   | 81     | 81   | 81    |    | > 00   | No.      | Pole         | 10     | ∞     | 81   | 10   | 81     |     |     |   |    |    |
| 000    | Type        | HSJ7   | 1203   | 1205 | 1207  |    | 1380   | Type     | HSJ7         | 1205   | 1205  | 1207 | 1209 | 1211   |     |     |   |    |    |

| Shaft    | ш            | 350  |      |      |      |      |
|----------|--------------|------|------|------|------|------|
|          | BB           | M36  |      |      |      |      |
|          | 0            | 280  |      |      |      |      |
| 2        | د<br>ح       | 560  |      |      |      |      |
| 8        | <del>}</del> | 1958 |      |      |      |      |
| 4        | צ            | 1170 |      |      |      |      |
| 9        | Z            | 1007 |      |      |      |      |
|          | :            | 2690 | 2930 |      |      | 3150 |
| <u>د</u> | ۲<br>۲       | 1060 | 1180 |      |      | 1290 |
|          |              | 4160 | 4400 |      |      | 4620 |
| 2        | ۷            | 42   |      |      |      |      |
| H        | E            | 420  |      |      |      |      |
| ŝ        | 5            | 2868 |      |      |      |      |
| 8        | 2            | 1268 |      |      |      |      |
|          | Ě            | 50   |      |      |      |      |
| -        | -            | 009  |      |      |      |      |
| ¢        | د            | 802  |      |      |      |      |
| ä        | H            | 648  |      |      |      |      |
| 6        | 3            | 1338 | 1578 |      |      | 1798 |
| 6        | 2            | 185  |      |      |      |      |
| 8        | 8            | 300  |      |      |      |      |
|          | ¥ 0          | 2774 | 3014 |      |      | 3234 |
| •        | ٥            | 2404 | 2644 |      |      | 2864 |
| 2        | ₹            | 3288 |      |      |      |      |
|          | 2            | 1287 |      |      |      |      |
| ł        | ł            | 2695 |      |      |      |      |
| k        | ¥            | 1143 |      |      |      |      |
| Ş        | R            | 1552 |      |      |      |      |
| Ş        | ł            | 845  |      |      |      |      |
| Ş        | £            | 2600 |      |      |      |      |
| 2        | ŧ            | 300  |      |      |      |      |
| <        | ٢            | 2400 |      |      |      |      |
| No. of   | Poles        | 10   | ∞    | 810  | 10   | 810  |
| Type     | HSJ7         | 1205 | 1205 | 1207 | 1209 | 1211 |